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A third order accurate method is proposed for the numerical solution of the one-dimen- 
sional Stefan problem. It provides approximations which are continuous with respect to the 
space-variable x, but which admit discontinuities with respect to the time variable I at each 
time step. The discretization is based on biquadratic finite elements in the plane (x, t). 
This method is specially appropriate for the computation of solutions which admit sin- 
gularities at the initial time or on the boundary. Numerical experiments are described. 

1. INTRODUCTION 

Many methods have been proposed for the numerical solution of the one-dimen- 
sional Stefan problem [l, 4, 5, 6, 9, 10, 11, 12, 13, 141. Some more general methods for 
the multi-dimensional Stefan problem can also be applied to the one-dimensional 
case (see the references contained in [2]). Most of these methods have an accuracy of 
the first order or less; only two of them (to the authors’ knowledge) are of order 2 
[l, 61. In this paper, we describe and experiment a method of order 3. The order of the 
method is not established by a mathematical proof, but is verified by numerical 
experiments. 

This method is based on space-time finite elements like the method that we have 
proposed in [I]; but, these elements are of a higher degree (biquadratic instead of 
bilinear). There is also an essential difference between these two methods: the method 
of [l] yields approximations which are continuous; on the contrary, the present 
method yields approximations which are continuous with respect to the space variable, 
but which admit discontinuities with respect to the time variable at each time step. 
We will call “continuous Q1 method” the method of [l] and “time-discontinuous Q2 
method” the method of this paper. 

In addition to its accuracy, the time-discontinuous Qz method has another advan- 
tage: it is specially well suited to the computation of solutions with singularities 
(discontinuous initial function, discontinuous boundary values, infinite speed of 
propagation of the free boundary at the initial time); the singularities generate no 
irregularity of the computed values at later times and the accuracy remains very 
satisfactory. 
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Let us remark that one of the authors has presented a general mathematical theory 
of time-discontinuous Galerkin-type methods for parabolic equations in a variable 
domain [8]. However, no numerical experiments had been performed and, moreover, 
this theory assumes that the moving boundary is given, which excludes the case of 
free boundary problems like the Stefan problem. 

Let us also remark that we describe our method for the one-phase Stefan problem, 
but it can also be applied to the case of several phases, in particular to the case of 
phases which can appear or disappear (see the remark of Section 3.2b). 

In Section 2 of this paper, we describe the problem that we want to solve. In 
Section 3, we assume that the free boundary is known and we describe a method for 
solving the heat equation in a given variable domain. rn Section 4, we describe how 
we compute the free boundary. Section 5 is devoted to numerical experiments. Finally, 
Appendix 1 gives the explicit expressions of the coefficients of the discrete equations 
and Appendix 2 contains additional comments related to questions of the referees. 

2. DESCRIPTION OF THE PROBLEM 

Let x be the space variable and t the time variable. Let be given three positive 
numbers a’, T and c, a positive function u”(x) defined in the interval 0 < x < a0 and 
a positive function g(t) defined in the interval 0 < f < T. 

Let W = {(x, t); 0 < x < a(t), 0 < t < T), where a(t) is an unknown function. The 
problem to be solved is the following: find a positive function U(X, t) defined on 
g(closure of 95’) and a positive function a(t) defined for 0 < t < T such that 

au a2u o ---= 
at a.9 in 9, (2.1) 

u(x, 0) = dyx) 

u(0, t) = g(r) 

u(u(t), t) = 0 

for 0 ,< zc < a’, (2.2) 

for 0 < t < T, (2.3) 

for 0 < t -5 T, (2.4) 

da 
_ = -c g (u(t), t) 
dt 

for 0 < t < T, (2.5) 

u(0) = d. (2.6) 

The partial differential equation (2.1) is the heat equation; the equation (2.2) is the 
initial condition; the equations (2.3) and (2.4) are the boundary conditions; the 
equation (2.5) gives the speed of propagation of the free boundary and the equation 
(2.6) gives its initial position. 

These equations represent the melting of a slab of ice. The water lies in the region 
0 < x < u(t) at the time t and the ice in the region x > u(t); u is the temperature of 
the water, the temperature of the ice is equal to zero. 
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Let us replace the partial differential equation (2.1) by an integral relation. Let 
8, and 19, be two arbitrary numbers such that 0 < e1 < t& < T and let G = G(B, , 19,) 
be the intersection of the domain ~3 with the strip & < t < 8,) i.e. G = {(x, t); 
0 < x < a(f), 8, < t < 0,). Let Q(G) be the space of all functions y which are 
defined and continuous on G, which admit bounded first order derivatives in G and 
which vanish for x -= 0 and x = u(t) for all t. Let J&e,) = {(x, t); 0 < x < a(r), 
t = e,}, with s = 1 or 2 (see Figure 1). Then, if u is a solution of the partial differential 
equation (2.1), it satisfies 

4+, q) = 0, for all v E G(G), (2.7) 

with 

up, dx - s 
up, dx (2.9 nk?,) 

Let us remark that the bilinear form A,(u, v) does not involve the derivative 
2u/i%; it is defined even for functions u which admit discontinuities with respect to t. 
Thus, it will be possible to use the integral relation (2.7) to define approximations 
which are discontinuous with respect to t. 

/ r 
0 a0 X 

FIG. 1. ThesubdomainG = G(B,, 6,). 

3. TIME-DISCONTINUOUS APPROXIMATIONS FOR THE HEAT EQUATION 

In this section, we assume that the curve x = a(t) is known and we describe a 
method for solving the heat equation in a variable domain (problem (2.1)-(2.4)). 
First, we will give the basic principle of time-discontinuous approximations as 
described in [8]; then we will specify the particular method that we have chosen. 
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3.1. Generalities 

Let (t”; 0 < R < N} be a finite sequence of real numbers such that to = 0, tn < tn+l, 
tN = T. Let G” = G(t”, tn+l) = {(x, t); 0 < x < a(t), tn < t < t”+l) and Gn = 
{(x, t); 0 < x < a(t), tn < t < P+l}, for 0 < n < N - 1. We have en = G* - Qn, 
where G” is the closure of G* and oRI = a(P) is the portion of the boundary of Gn 
which lies on the line t = tn. 

For each ~1, let dihn be a finite dimensional subspace of @(G”). Let W, be the space 
of all functions wh which are defined on g and which coincide with a function of 
Qrrn on each en; note that the functions w,~ are continuous on each @, i.e. for 
in < t .< tn bl, but they admit discontinuities with respect to t at each t = tn, 0 < 
y1 < IV - I. Let V, be a set of functions which is affine to the space W, ; each vh E V, 
is of the form oh = E,,~~ i- w,, , with wh E W,, , where v~,~~ is a certain continuous 
function defined on .% which vanishes for x = a(t) and which satisfies the boundary 
condition (2.3) in a certain approximate way. Then, we approximate the problem 
(2.1)-(2.4) by the following problem obtained by discretizing the integral relation 
(2.7). 

Discrete problem: Find a,function u,~ E V, such that uh(x, 0) = uO(x) for 0 < x < a0 
and 

4744~ > 9%) = 0, (3.1) 

forall~,~E@~nandO <n <N- 1. 

For each n, the relation (3.1) involves the known values of un at the time tn (through 
the fourth integral of (2.8)) and the unknown values of uh for tn < t ,< tnil (through 
the first three integrals of (2.8)). If we write this relation for a set of functions yjl 
which is a base of the space Qhs and if we write the function uh in the strip P < t .< 
tn+l as a Linear combination of vg,h and of the functions vh, we get a linear system of 
algebraic equations with a square matrix. 

The following result is proved in [8]: the problem (3.1) admits a unique solution uh 
which is determined by solving a linear system of algebraic equations at each time 
step; moreover, the method is unconditionally stable in L2 (for any choice of the times 
tn and any choice of the discrete spaces @hn). 

3.2. Choice of the Discrete Spaces 

Now, we will make a specific choice for the discrete spaces @h” and vh . First, we 
recall the definition of finite elements “of type Q2” and introduce some notations 
(for more details, see [3, 151). 

3.2.a. Finite Elements of Type Qz 

Let (5, y} be a system of orthonormal coordinates in a fixed arbitrary plane and let 
us consider the unit square li- = ((6, 7); 0 < 5 < 1, 0 < 7 < I}. Let li? = (f, 7) 
denote an arbitrary point of R and let Qz denote the space of all functions 4(B) = 
$(.$, 7) defined on I? which are polynomials of degree ,< 2 with respect to each of the 
variables [ and v separately. 
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Let .J? be the set of the nine points P E R such that each of their coordinates is equal 
to 0, 4 or 1. Any function of Qz is uniquely determined by its values on 2. To each 
point P E 2, there corresponds a function $(fi; P) such that 

r$(fi; P) = 1 ; 
if li?l = P’, 
if fi E JZ - (P). (3.2) 

The set {I?, Q2, ,??} defines a reference finite element and the functions @(fi; p) are 
its “shape functions”. 

Now, let .Z be a set of nine points in the plane (x, t) and let F be a bijective mapping 
of 2 onto 2. The mapping 9 can be extended to the whole square I? by means of the 
formula 

3(ti) = c c$(ti; Ii) F(P), for all fi E I?. (3.3) 
PE‘e 

Let us denote M = F(@), P = F(p), K = F(g) and assume that the extended 
mapping 9 is bijective from R onto K. Then, to each function + defined on R, there 
corresponds a function q defined on K and conversely, by means of the formula 

qJ(M) = rgti) = &F-l(M)), 

where 9-l is the inverse mapping of P. 
Let Q, = Qz(K) denote the space of all functions y such that the corresponding 

function I$ E Qz . Any function of Qz is uniquely determined by its values at the points 
of Z. The set {K, Q, , E} defines a finite element “of type Q2”; the points of 2 are 
called the nodes. 

3.2.b. The Discrete Spaces V, and Qhn 

We will partition each subdomain Gn C .% into elements K which are identical 
to the element described in 3.2.a. Let us consider an arbitrary subdomain G”. Let 
p and v be two indices which can take the values 0, 4 and 1; let tn+” = (1 - V) tn + 
vtn+l. For each t = tn+“, let there be a finite family of points Pp!l = (xy,‘:: , tn+“) E %“, 
where i is an integer, 0 < i < I - 1, and x,“+* = 0, xy+” = x2$ < x:,:” , XT& = 
(x;+” + xg/2, x;+” = a(tn+v). For each index i, one defines a finite element K = Kin 
as follows. 

Let PwU E 2 denote the point whose coordinates are f = p, 7 = v. Let be the corre- 
spondance PUv --f PFz; . There follows a mapping 9 defined on R and an element 
K = F(I?), as in Section 3.2.a. The two sides 5 = 0 and E =1 of the square k are 
transformed into two arcs of parabolas; the mapping F is bijective if these two arcs 
do not intersect. Then, the space Qz(K) is defined as in paragraph 3.2.a (Fig. 2). The 
boundaries of two adjacent elements Kin and Kin,, contain a common arc of parabola. 

Let Ghn be the union of all the elements Kin, for 0 < i < Z - 1; the set G,* is in 
general different from the set Gn because the portion of the boundary of G” which 
coincides with the curve x = a(t) is replaced by an arc of parabola. Let Yhn be the 
space of all functions defined and continuous on Ghn whose restriction to each 
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X 
- 

I ~-- 

FIG. 2. The correspondence between the reference element I? and an element K = K,*. 

element K belongs to Q&C) and which vanish at the points Py+” for v = 0, $ and 1 
(therefore they vanish on the whole arc of parabola which approximates the curve 
x = a(t) for tn < t < t”+l). Let cfin = Ghn - A?l and &?h = {u Ghn; 0 < n < N - 1). 
One defines: 

QShn = set of all functions P)~ E Y hn which vanish for x = 0. Vh = set of all functions 
vh defined on gh , whose restriction to each C&” coincides with a function of Yhn and 
which satisfy the boundary condition (2.3) for t = t n+v, 0 < n < N - 1, v = 0, 8 or 1. 

Remark. The discretization of the domain G” at each time step can be completely 
independent of the discretization of the domain G”-l. For example, the nodes PT+” of 
the elements Kin can be different from the nodes Pin of the elements KT-I; the number 
of elements Ki” for each n can also depend on n (which can be interesting for the 
multiphase Stefan problem with appearing and disappearing phases). However, in 
this paper, we will simply take Pi”*’ = Pi”. 
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3.3. Structure of the System of Discrete Equations 

Let V, be the space of functions defined in Section 3.2. For each v,~ E V, , let 

n-to 
“i+u = lim{u,(M); A4 E G”, M ---f P,T;,;, 

The restriction to the set C?,~ of an arbitrary function v,, E VI, is uniquely determined 
by the values of vr:L for&<i+p<Z-$~andv==O,&and l.Hence,foreachn, 
the system of discrete equations (3.1) can be written in terms of the unknowns u::; 
for + < i + p < Z - 3 and v = 0, $ and 1. Let us numerate these unknowns in the 
following order: u,“,,, ,..., @, u;+li2, uT+l, u:+~,~ , u,“,:‘il,“, u:$~ , uF+r ,..., u;?~,~ . Let 
P denote the set of corresponding nodes P$!L numerated in the same order. For 
each P E .4Pn, let yL,P be the function in the space Qhn such that 

WPW) = 
I 

” 
if M=P, 

0, if ME 9” - {P). (3.4) 

The set of all the functions P)~,~ is a base of Qhn. 
Let us take P)~ in (3.1) successively equal to each of the functions yh,P with P E .Yl’. 

Then, it is easy to check by looking only at the support of the functions vh,P , that the 
matrix B of the resulting system of linear algebraic equations has a block penta- 
diagonal structure of the form represented on Fig. 3. Each block is a square 3 x 3 
matrix denoted B?“. One has Bj’; # 0, only if 

/ 

j 
k= .j-+I 

,.j f 2 and j even 

3.4. Zntroduction of Numerical quadrature Formulae 

Instead of an exact computation of the integrals involved in the left handside 
member of (3.1), we will use numerical quadrature formulae. The advantage is to 
simplify the coefficients of the system of equations (3.1). 

The integrals with respect to x are approximated by using the Simpson formula 
on each of the segments [P,“‘“, P,“,: i.e. 

where $ is an arbitrary function. 
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FIG. 3. The structure of the matrix B of the system of discrete equations. 

The integrals with respect to x and t are approximated by using the Simpson 
formula, first with respect to x, then with respect to t, in each of the elements K,“, i.e. 

11 t,G dx dt - &(t”+’ - P)(q+O($b) + 4Ji”+“7#) + .I;“($)) 
Ki” 

(see Appendix 2). 
Using these quadrature formulae does not change the structure of the matrix B 

of the system (3.1), but the submatrices Bik become diagonal for k #:j. This property 
is easy to check by noticing that, for any P E Yn, the points P’ E 9’” at which the 
function P)~,~ vanishes together with its first order derivatives are not involved in the 
equation corresponding to P. 

Explicit formulae for computing the coefficients of the equations (3.1) are given in 
the appendix at the end of this paper. 

3.5. Approximation of the Flux at the Boundary 

The value of the derivative au/ax for x = a(t) represents the heat flux through the 
moving boundary. Let us denote it by Du(t). It can be approximated by the corre- 
sponding derivative of the approximate solution uh . But, we prefer to use the follow- 
ing method which permits to gain one order of accuracy. 

Let n be arbitrary and v = 0, i- or 1. Denote by tii+” the function of the variable x 
obtained by cubic interpolation of the values UT:; at the nodes PF+‘;_” for i + TV = 
I--,I-l,I--andI.Let(Du), W” denote the value of the x-derivative of iii+’ at 



THIRD ORDER METHOD FOR STEFAN PROBLEM 153 

the end-point Pp+‘. Then, we approximate Du(t) in the interval t” < t < tn+l by the 
function (Du)h(t) obtained by quadratic interpolation of the three values of (Du)E+” 
forv=O,$andl. 

4. COMPUTATION OF THE FREE BOUNDARY 

In the preceding section, we have assumed that the moving boundary was known. 
Now, we will consider the complete problem (2.1)-(2.6) and describe a method for 
computing the free boundary. 

We approximate the curve x = a(t) by a continuous curve x = a,(t) whose 
restriction to each interval tn < t < t n+l is an arc of parabola x = qin)(t), where qin)(t) 
denotes a polynomial of degree < 2 with respect to the variable t. Let an + = uh(tn+“). 
At each time step, the values of CP+~‘~ and an-l are computed by means of the 
following formula which is an analogue of the relation obtained by integrating (2.6) 
with respect to t: 

p+” 
(ptv = an - c 

i (W/L (4 u’f, (4.1) - pz 

for v = 4 and 1, where (Du)h(t) denotes the approximation of h(t) obtained by the 
method of paragraph 3.5. 

This formula is implicit since the values of (Du)h(t) in the interval t” < t < tni-l 
depend on the computed values of uh in the strip tn < t < tn+l which in turn depend 
on an-t1j2 and an+l. We will use the following iterative procedure. 

The equations (3.1) together with the method of paragraph 3.5 for approximating 
h(t) define a function 

@+1/z, an+y + z&(x, t) + (D&(t) for tn < t < P+l, 

The equation (4.1) defines a function 

{D.&(t); t” < t < t”+l} -+ (an+llP, a”f1). 

We will perform the iterations: 

(an+1’2sz, an’l~z) + (u*(x, t))T --t ((DU)~(t))z, 
((DU)h(t))z -+ (an+VJ+1, un+l.z+l), 

(4.2) 
(4.3) 

where I denotes the iteration index. 
To start the iterations, we take 

an+v,O _. - q;n-l)(tn+y, for v = l/2 and 1, and n 3 1, 

i.e. we use the quadratic extrapolation of the values an-l, an-l/z and an. 
For n = 0. we take also = uljz*o = a”. 

(4.4) 
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5. NUMERICAL EXPERIMENTS 

First, we compute a smooth solution of problem (2.1)-(2.6) and determine the order 
of convergence of the method; we consider the same test-problem as in [l]. Also, we 
compare the results with those obtained in [l] and we check the stability of the method 
by increasing the time steps and the speed of propagation of the free boundary. 

Then, we compute solutions which admit singularities. We consider two cases: 
in problem 2, the initial function is discontinuous at a point inside the interval (0, a”); 
in problem 3, the initial function does not vanish at the end-point x = a0 and 
therefore the initial speed of propagation of the free boundary is infinite. 

In all this section, we use a constant time step dt = tn - P-I and the nodes are 
equally spaced in each interval (0, an+“), i.e. 

We denote by h the initial space step, i.e. 

h = a”lI. 

5.1. Problem 1 (Smooth Solution) 

We want to solve the problem (2. I)-(2.6) with c = 1, a(0) = I, 

uyx> = (1 - x)2, for O<x<l, 

‘g(t) = 1, for t > 0. 

5.1 .a. Order of Convergence 

Let us choose the time step dt = Ah, where h is a constant. Let z = z(u) be a certain 
functional of the solution U, for example the value of u at a given point (x, t) or the 
value of a derivative of u at a given point or the value of a(t) for a given time t. Let 
z,~ be the approximate value of z computed with the initial mesh-size h. We want to 
determine a positive number p such that 

Z b - z ‘u Chf’, (5.1) 

for h small, where C is a constant. 
Let h, , h, and h, be three values of h with h, > h, > h, and assume that (5.1) 

holds. Then, 

zhl - zh:s - (h# - (h&p (r$ - 1 

zh2 - Zh, - (h&P - (h# = (r2)p - I (5.2) 

with r, = h,/h, and r2 = h,/h, 
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Let f(p) = ((r#’ - I)/((r$’ - 1). This function increases from 1 to + co as p 
increases from -cc to + cc and we have 

f(O) = log = log h, - log h, 
log r2 log h, - log h, (see appendix 2). 

Lt follows that, if 

zhx - Zha log h, - log h, 
zh, - zh, > log h, - log h, ’ (5.3) 

one can determine a unique positive number p = ~(h, , h, , h,) such that 

czhl - zh,)/(zh, - zh3) =f(d* 

The method is of order p*, for the computation of the functional z, if the condition 
(5.3) is satisfied for all sufficiently small h, , h, and h, and if the corresponding number 
p = p(h, , h, , h3) converges to p* as h, , h, and h, decrease. 

This procedure to determine the order oaccuracy is more general than the procedure 
used in [l] since h, , h, and h, can be chosen arbitrarily whereas the condition h,/h, = 
h,/h, was required in [I]. It permits one to choose a sequence of values of h which 
decreases more slowly than the sequence used in [l].l 

We have performed the computations until the time T = 1 with At = h = i/l 
for values of Z which are multiples of 8. Tables 1 and II show the convergence of the 
method for the following functionals z(u). 

TABLE 1 

Problem 1. Convergence for the Value of u at the Point x = 1, t = 1, with At = h = 1,‘I. 

I_ 

16 0. 3 I 2 4 6 4 3 1 

24 0. 3 1 2 4 3. 0 5 

32 0. 3 1 2 4 3. 0 1 

40 0. 3 1 2 4 2. 9 9 

1 The advantage of this procedure has been mentioned to us by Professor R. DeVogelaere, University 
of California, Berkeley (private communication). 
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TABLE II 

Problem 1. Convergence for the Position of the Free Boundary at the Time t = 1 

I aa P 

8 1.5 6 0 4 4 4 2 8 
- 

16 1. 5 6 0 4 9 0 4 5 

24 1. 5 6 0 4 9 4 8 2 3. 1 0 

32 1. 5 6 0 4 9 5 8 6 3. 0 4 

40 I. 5 6 0 4 9 1 6 2 3 3. 0 3 

Table I: value of U(X, t) for x = I and t = 1. 
Table II: value of u(t) for t = 1. 
Moreover, Table III gives the value of the discontinuity u:‘” - uhn at the node 

.PI^;;’ located at the midpoint of the interval (0, u(t)) for t = I - At. 
The first column of these tables gives the values of Z = I/h, the second one gives the 

computed values zh of the functional z(u) and the third one gives the values of p 
computed for the last three values of h. Let us remark that, on Table I, the value of u 
at the point A4 = (x, t) = (1, 1) is not approximated by uh(A4), but by an improved 
value ii,(M) obtained by cubic interpolation of uh with respect to x at the four 
neighbour nodes (two on each side of M). The introduction of cubic interpolation 
does not improve the accuracy of the method, but yields a convergent sequence for 
the computed values of p; otherwise, these values have a randomlike variation which 
is related to the distance of the point M to the closest mesh-point. The same pheno- 
menon is described in [l]. 

TABLE III 

Problem 1. Values of the Jump dh = ui+” - uhn at the Middle Node fort = 1 - dt” 

I 

8 
16 
24 
32 
40 

lo6 . dp, P 
___- .~ 

0. 5 9 5 2 
0. 0 6 8 4 
0. 0 1 9 6 3. 1 3 
0. 0 0 8 1 3. 0 8 
0. 0 0 4 1 3. 0 6 

“The values of dh have been multiplied by 105. 
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Tables I and II show that the method is of order p = 3 (for the values of U(X, t) and 
u(t)) and Table III shows that the discontinuities are also of order 3. 

At each time step we have used the Gauss method to solve the linear system of 
algebraic equations (3.1) and we have performed the iterations on the position of the 
free boundary until the relative difference between two successive iterated values 
becomes inferior to E = 1O-8, i.e. 

1 a"+",z+l _ (p+v.z pp+v*z < E, for v=& and 1. 

For Z = 40, the average number of iterations at each time step is equal to 3.5 and the 
total computation time until t = 1 is equal to 27 seconds on a computer CDC 7600; 
Tables I and II show that the relative errors on the values of u and on the position of 
the free boundary are inferior to 10e6. 

If we seek only an accuracy of the order of 10-4, it is sufficient to take Z = 8 and 
E = 10-5. Then, the relative errors on ~(1, 1) and a(l) are respectively equal to 
0.6 x 1O-4 and 0.3 x 10-4; the average number of iterations is equal to 3.75 and the 
computation time is equal to 1.04 second. 

Let us remark however, that the program has been written without trying to 
minimize the computation time. 

TABLE IV 

Problem 1. Value of I( at the Point x = 1, t = 1: Comparison of Two Methods 

I Method I Method II 

8 0. 3 1 2 3 

16 0. 3 1 2 4 

32 0. 3 1 2 4 

40 

64 0. 3 1 2 4 

5 5 6 4 0.3 1 2 4 i 4 I 3 9 

0 0 9 7 0. 3 1 2 4 6 4 3 1 
- 

4 5 6 5 0. 3 1 2 4 6 6 3 5 

0. 3 1 2 4 6 6 4 9 
- 

6 1 3 2 

128 0. 3 1 2 4 6 

256 0. 3 1 2 4 6 

512 0. 3 1 2 4 6 

a Method I: Continuous Q1 method of 111. Method II: Time-discontinuous Q, method (this paper). 
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5.1.b. Comparison with the Continuous Q, Method 

Tables IV and V permit to compare the accuracy of the time-discontinuous Q, 
method (method 2) with the continuous Q, method (method 1). Table IV gives 
the computed values of u(x, t) for x = I and t = 1 and Table V gives the computed 
values of a(t) for t = 1. 

TABLE V 

Problem 1. Position of the Free Boundary: Comparison of Two Methods 

I 
___ 

8 

Method I 

16 

1. 5 c- 5 9 6 4 8 1 I 1. 5 6 0 4 L 4 4 2 8 

1. 5 6 0 2 0 6 4 0 1. 5 6 0 4 9 0 4 5 
- 

32 

40 

1. 5 6 0 4 1 5 0 3 1. 5 6 0 4 9 5 8 6 
- 

1. 5 6 0 4 9 6 2 3 

64 I. 5 6 0 4 7 5 1 4 
- 

128 1.56049111 

256 

512 

1. 5 6 0 4 9 5 2 2 
- 

1. 5 6 0 4 9 6 2 6 

Method II 

These tables show that it is sufficient to take I = 40 to obtain relative errors 
inferior to 1O-6 if we use method 2, while we need I = 512 if we use method 1. For 
both methods, the total number of elements until the time t = 1 is equal to P. But, 
the total number of unknowns is approximately Z2 for method 1 and approximately 
6 Z2 for method 2 (since for each i and n, we must compute u:+‘, u;+ll’, @+l, uF$, 
24~+::!2” , u$&), i.e. 

Ml ‘v (512)2 for method 1, 
N2 N 6 x (40)2 for method 2. 

The ratio of these two numbers is 

J’J Jr/-, N 27. 

5.1 .c. Stability 

In the preceding sequence of computations we have taken At = h. Now, we want 
to check the stability of the method when we increase the ratio h = At/h. 
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We have performed computations with h = 2, 4 and 8. The computed values 
remain quite regular; no oscillation appears, neither on the values of u nor on the 
position of the free boundary. An illustration is given by Fig. 4 and 5 which represent 
the displacement @n+l - a” of the free boundary at each time step for X = 1 and 
h = 8 respectively and h = l/32. 

0 ai25 0:25 

FIG. 4. Problem I. Displacement of the free boundary at each time step for At = h = l/32. 

fY 

t b t 1:5 2 2:5 

FIG. 5. Problem 1. Same as figure 4 with At = 8h, h = l/32. 

” 

Let us remark that the maximum of u n l - an on each of the figures 4 and 5 corre- 7 
sponds to a maximum of the speed of propagation of the free boundary; the speed of 
propagation is equal to zero at the initial time, increases until the time t N 0.25, then 
decreases. 

In order to study if the stability may depend on the speed of propagation of the free 
boundary, we have increased the coefficient c of equation (2.5). For c = 4 and X = 8, 
the results remain very regular. 

581/32/2-Z 
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These various computations permit to conclude that the method is unconditionally 
stable. 

5.2. Problem 2 (Discontinuity at the Initial Time) 

Now, we want to compute a non smooth solution of problem (2.1)-(2.6). We take 
c=l,g(t)=lfort>Oand 

I 
1, e4 = 1 _ ‘c 

for 0 < x ,( l/2, 
‘, for l/2 < x < 1 = a(0). 

The solution u is discontinuous at the point x = l/2, t = 0. 
We have performed computations with dt = h = l/64. Figure 6 represents the 

function uhn computed at the time tn for n = I, 2, 3, 4, 5. 

No oscillation appears. This is an important quality of the method. Let us recall, 
for example, that the continuous Q, method, like the Crank-Nicolson scheme of 
which it is an extension, admits oscillations of the computed values when the exact 
solution is discontinuous (unless the time step dt is taken of the order of h2). 

U 
1.1 

I I I I I I 

1.0 

.a 

.3 

.2 

il 

0 

0 .2 .4 .6 .(I 1.0 1.2 1.4- 

FIG. 6. Problem 2. Functions uhn computed at the first five time steps, with dt = h = l/64. 
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5.3. Problem 3 (Discontinuity on the Free Boundary) 

Now, we take 

zP(x) = 1, for 0 < x < 1 = a(O). 

The constant c and the function g(t) are the same as in problems 1 and 2. 
The solution u is discontinuous on the free boundary at the time t = 0, since 

u(a(O), 0) = u”(1) = 1 and u(a(t), t) = 0 for t > 0. The derivative au/ax is infinite in 
the neighbourhood of the discontinuity and therefore, the speed of propagation of 
the free boundary is injinite at the time t = 0. 

Despite this singularity, the method can be applied without any trouble: no oscilla- 
tion appears on the computed values and the accuracy is good. These results are 
exhibited on Figs. 7 and 8 and Table VI. 

Figure 7 represents the function uAn computed at the time tT’ = nh for h I!40 
and n = 1, 2, 3, 4, 5. Figure 8 represents the corresponding function u(t). Table VI 
gives a comparison of the values of a(t) computed with h = l/32 and h :-- Ii64 
during the first time steps; the first column gives the values of n; the second column 

1.1 

1.0 

.9 

.6 

.7 

.6 

.5 

.4 

.3 

.2 

.1 

6 

0 .2 .4 .6 .6 1.0 1.2 1.4 

FIG. 7. Problem 3. Functions unn computed at the first five time steps, with dt = h z L40. 



BONNEROT AND JAMET 

n=t/At 

1.0 1.1 1.2 1.3 

FIG. 8. Problem 3. Movement of the free boundary during the first ten time steps, with 
At = h = l/64. 

TABLE VI 

Problem 3. Position of the Free Boundary: Comparison of the Computed Values at the First Time 
Steps with h = l/32 and h = l/64. 

At = h = l/32 At = h = l/64 
II ah% a; Difference 

_____ 
0 1. 0 0 0 0 0 1. 0 0 0 0 0 

1 1. 1 2 8 8 2 1. 1 2 7 6 4 0. 0 0 1 1 8 

2 1. 1 8 0 4 9 1. 1 7 9 7 0 0. 0 0 0 7 9 

3 1. 2 2 0 4 1 1. 2 1 9 7 6 0. 0 0 0 6 5 

4 1. 2 5 4 I 4 1. 2 5 3 5 7 0. 0 0 0 5 7 

5 1. 2 8 3 8 9 1. 2 8 3 3 8 0. 0 0 0 5 I 

gives the values of a(t) computed for t = tn = nh with h = l/32; the third column 
gives the values of u(t) computed for t = t 2n = 2 nh with h = l/64; the fourth column 
gives the difference between the values of column 2 and column 3: we observe that 
the relative difference between these values is of the order of 1O-3 for n = 1 and 
decreases as n increases. For a solution with such a singularity this result is very 
satisfactory. 

Remark 1. The three problems presented in this section have been chosen in order 
to exhibit and isolate the main difficulties which may be encountered in the numerical 
solution of the one-phase Stefan problem. The hardest case corresponds of course 
to problem 3 with a discontinuity of the solution on the free boundary which implies 
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an infinite speed of propagation of the front at the initial time. Various other numerical 
experiments have been performed although they are not reported in this paper. In 
particular, we have tested the case of a discontinuity on the fixed boundary (g(t) 
discontinuous); this case is simpler than the case of problem 3 and presents no 
difficulty. 

Let us also mention that the cases of an appearing phase (a(O) = 0), of several 
phases and of disappearing phases are presently being experimented with. 

Remark 2. Another possibility for solving the one-dimensional Stefan problem 
is to make the change of variable 5 = x/a(t) in order to transform the moving 
boundary into a fixed boundary. This leads to a system of two ordinary differential 
equations and a non-linear parabolic equation. Since the submission of this paper, 
Nitsche [16] has established error estimates for an appropriate Galerkin approxima- 
tion of this new problem. However, as far as the authors know, no high order accurate 
approximation of the Stefan problem has yet been computed by this method. 

Also, it should be noted that, in the case of problem 3, the transformation (x, t) ---f 
([, t) is singular at the initial time since a’(t) is infinite. Moreover, this method cannot 
be applied to problems with appearing and disappearing phases, for example to the 
case a(O) = 0. Finally, in practical problems, heat transfer is often coupled with other 
phenomenons, so that we have to solve other partial differential equations which are 
coupled with the heat equation: for these other equations the change of variable 
x---f [ may be inconvenient; so, it seems preferable to solve the whole problem 
directly without transformation. 

APPENDIX 1. EXPLICIT FORMULA FOR COMPUTING THE COEFFICIENTS 
OF THE DISCRETE EQUATIONS 

Assume that we have performed the computations until the time t = t”. Let 

9 In = the set of all nodes of @ which are not located on the moving boundary 
x = a(t), 

,Ys = the set of all nodes of Gn which are not located on the moving boundary 
N = a(t) nor on the fixed boundary x = 0. 

To each point P = P;1:;Ly E Y”, there corresponds one unknown $2: and one equa- 
tion of the system (3.1); this equation is obtained by taking P)?~ = vh,P in (3.1), where 
q~,,,~ is the function defined by (3.4): it is of the form 

Lpl& = L& ) (Al) 
where L, is a linear functional which involves the values of uh corresponding to the 
time indices n + 0, n t l/2 and n + 1, and where Lk is a linear functional which 
involves the computed values of uh corresponding to the time index n. The functional 
Lp corresponds to the first three integrals of the bilinear form (2.8) and the functional 
Lk corresponds to the fourth integral. 
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Let us consider first the functional L, . It can be written in the form: 

LPUh = 1 YP(P’) z&P’), 
P’EY’n 

642) 

with the notation u?(P) = ~4::; for P = Pi”,: (note that u;(P) # uh(P) for v = 0 
since u;(P) = z&+z and uh(P) = z$++,). The values of u:(P’) which appear in (A2) are 
unknown except at the nodes P’ E 9’” - Yn (which are located on the boundary 
x = 0). 

The coefficients yp(P’) can be written in the form 

YPW = c f YP.K,m(P’), 
K m=1 

where the sum is taken for all elements Kin Ghn which contain both P and P’ (there are 
at most two such elements for each pair of points P and P’) and where the index m 
corresponds to each of the first three integrals of (2.8). Each coefficient Y~,~,~(P’) is 
obtained by approximating the mth integral of (2.8) on the element K by means of the 
corresponding quadrature formula of Section 3.4 Explicit formulae for computing 
these coefficients are given below. The notations are the same as in Section 3. I : the 
points P, p and iI?! are the points of the unit square R which correspond to the 
points P, P’ and M of the element K; a point P E 2 is determined by its indices p and v. 
All the functions defined on I? and independent of the element K are denoted : where 
the dot stands for an arbitrary symbol. Finally, x(M) denotes the x-coordinate of a 
point M. 

The explicit expression of the shape functions is: 

with ii? = (5, q), P = (CL, v) and 

jgs) = (1 - s)(l - 2s), 

p”l& = 4s(l - 4, 
jqs) = s(2s - I). 

Let 

for P = (p., v), with 
@l/2) = 2/3, 

S(P, P, ii2) = i(P’)(d(P, P’$(lq P) - /cl@, P’)&(A2, P,)), 

a(M) = 2 d(xf’, ni) x(W). 
M’EZ(K) 
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Then, 

YP.K,lW = ,=z,, w, P'> fi) -4W~ 

YP.K.U) = (t n+l - P) &,, qfi> a@, Ll2) @', fi)/a(M), 

e,(P) $?lp(P') u(P') 
YP,K,BW = 1(-J 

if P’ E Y’” n @i-l 
if P’ $ 9’” n L?n+lY 

Let us now consider the functional Lk . Let 9’: = 9”” n 52” = the set of all 
nodes of 9’” which lie on the line t = tn. Then, 

-Guik = c yb(P’) w-9, 
P'EYp;n 

with 

YXP') = c YP,K.m, 
K 

YP.K.I(P') = +(p) $P(P> ,(p? for P’ E Yhn. 

Remarks. The values of the coefficients Oz, fl, E^ and 8 are independent of the element 
K and are computed once and for all. 

The function a(M) which appears at the denumerator of the expression of yp,K,2 is 
equal to $(M)/(t A+1 - t “), where y(M) denotes the Jacobian of the mapping 9. The 
conditions x;+’ < xi”+:‘, xr+:‘iz = (xr+” + x~$“)/2, imply that $(M) is strictly positive 
for all M E Z(K). 

The foregoing formulae are general; they do not assume that the point PT,$ is 
the midpoint of the segment [P~+‘P~?~]; the only condition is that the Jacobian of the 
mapping 9 must not vanish. 

APPENDIX 2. 

(1) Isoparametric numerical integration 

In Section 3.4, we have described how the integrals involved in the integral relation 
(3.1) are computed by means of Simpson’s rule. It is easy to check that the use of 
Simpson’s rule is in accordance with the general theory of numerical integration for 
isoparametric finite elements (see [3, 151). 

On the unit square g, the coefficients of the quadrature formula at the points 
pUv are equal to 

* WI1 ” = e^(p)C(v), 

with e^(O) = Z(l) = l/6 and Q/2) = 2/3. 
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On an element K = K,“, the coefficients of the corresponding quadrature formula 
at the points PT!: are equal to 

where jfn(p) is the value at the point P of the Jacobian of the mapping 9: l? + Kin. 
We have 

&yPJ = (P+l - t”)(x;$; - iv;+“), 

which yields the formula of Section 3.4. 

(2) Monotonicity of the Function f( p) 

In Section 5.l.a, we have considered the function f(p) = ((rl)n - l)/((r2)” - 1) 
with r1 > r2 > 1 and we have used the fact that it is strictly increasing from $1 to 
+ cc asp increases from - oc, to + 00. This property is easy to prove by studying the 
sign of the derivativef’(p). 

For simplicity, we will write a and b instead of rl and rz and use some further nota- 
tion which is independent of the notation used in the other parts of this paper. We 
have : 

f(P) = Y(P)/Z(P)? with y(p)=@-l,z(p)=bp--l,a>b>l. 

The function f(p) is defined for all p E R, except for p = 0 since y(0) = z(0) = 0. 
But, as p -+ 0, f(p) converges to y’(O)/z’(O) = Log u/Log b; hence, we can extend the 
definition of the functionf(p) to all of IF2 by continuity. 

We have 
Y(P) < Z(P) < 0 for p < 0, 

Y(P) > Z(P) > 0 for p > 0. 
Hence, 

f(P) > 13 for all p. 

For p # 0, we have 

f’(P) Y’(P) Z’(P) 
-=vo .f(P) 

- ~ = g@, PI - db, ~1, 
Z(P) 

with 
sfl . Log s 

d4 PI = Sn _ , 
Log s 

= ~. 1 - s-+- 

Let us show that the function g(s, p) is strictly increasing with respect to s for 
s > 1 and for any fixed p # 0. We have: 

f R(& P) = (f (1 - s--p) - ps-p-1 Log s J/ (1 - ,-p)2 

= (SP - 1 - p Log s)/s”+l(l - s-P)2 

For s > 1 and p # 0, (a/&)g(s, p) has the same sign as h(s, p) = s*’ - p Log s - I. 
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But, we have: 

h(s, PI = 0 for s=l, 

$ (s, p) = psp-1 - p/s = p(s” - 1)/S > 0 for s>l 

and for p # 0. 
Hence, h(s, p) > 0 for s > 1 and p # 0. 

It follows 

i ids, P) > 0 for s > 1 and p ‘T= 0, 

da, P) - g@, P) > 0 for a>b>l and p d. 0, 

.fYP) > 0 for p # 0, and therefore, 
f(p) is increasing for all p E R. 
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